学术报告-周鹏

发布人:
责任人:
点击数:
更新时间:
2020-01-13 15:29:00

学术报告


题      目:On a river population model: The role of advection



报  告  人:周鹏   教授  (邀请人:余虓 )

                                 上海师范大学




时      间:2020-01-13 10:00--11:00


地      点:学院401


报告人简介:

        周鹏,上海师范大学数学系教授。2015年博士毕业于上海交通大学,师从肖冬梅教授。2015-2017年受大西洋数学科学研究联盟(AARMS)资助,在加拿大纽芬兰纪念大学从事博士后研究,合作导师为赵晓强教授。2017年入选上海高校特聘教授(东方学者)。主要研究领域为微分方程和应用动力系统,在J. Math. Pure Appl., J. Funt. Anal., Calc. Var. Partial Differential Equations, , J. Differential Equations等学术期刊上发表论文十余篇。

摘      要:

       We use a Lotka-Volterra competition-diffusion-advection system to model the population dynamics of two competing aquatic organisms living in a ``river to ocean" environment.It is assumed that two populations are identical except their movement strategies as reflected by diffusion and advection rates. Regarding the advection rates as variable parameters, we achieve a comprehensive understanding on the global dynamics, which suggests that if one species takes a suitably strong advection speed, then it will be completely displaced by its competitor, i.e., the competitive exclusion principle holds; while if the advection speeds of two populations are suitably balanced, coexistence steady state is observed. Furthermore, by a numerical approach, we obtain rich simulation results, which not only confirm previous theoretical finding but also suggest some interesting problems that deserve future investigation both mathematically and biologically.







xxfseo.com