学术报告-何俊锋

发布人:
责任人:
点击数:
更新时间:
2020-01-10 15:25:00

学术报告


题      目:Spatial Decay and Stability of Traveling Fronts for Degenerate Fisher Type Equations in Cylinder



报  告  人:何俊锋   讲师  (邀请人:丁维维 )

                                  深圳技术大学




时      间:2020-01-10 15:20--16:10


地      点:学院401


报告人简介:

        何俊锋,助理教授,2017年毕业于首都师范大学获应用数学专业博士学位,现任职于深圳技术大学。2017年至2019年在武汉大学与南方科技大学从事博士后研究工作。曾以访问学者身份访问剑桥大学、加拿大纽芬兰纪念大学、香港中文大学、台湾大学等。主要研究方向为柱形区域上反应扩散方程行波解的定性研究以及带有实效边界条件的渐近传播速度等,曾获中国博士后科学基金资助一项,参与国家自然科学基金多项。

摘      要:

        In this talk, we consider the multidimensional traveling fronts of the degenerate Fisher type equation in an unbounded cylinder. A particular attention is paid on the spatial decay of traveling fronts with all speeds, especially for the p-degree Fisher type equation we get the precise algebraic decaying rates and the higher order expansion of traveling fronts with non-critical speeds. Furthermore, we show the local exponential stability of all traveling fronts in some exponentially weighted spaces and the Lyapunov stability of traveling fronts with noncritical speeds in some polynomially weighted spaces. Extensive asymptotic behavior results are investigated to illustrate the asymptotic spreading speed of the solution for more general initial data, which are determined by the spatial decay of the initial data at one end. Our main techniques are the spectral analysis and sub-super solution method.





xxfseo.com